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Abstract. Rift Valley fever (RVF) is a viral zoonotic disease occurring throughout Africa, the Arabian Peninsula,
and Madagascar. The disease is caused by a Phlebovirus (RVF virus [RVFV]) transmitted to vertebrate hosts through
the bite of infected mosquitoes. In Madagascar, the first RVFV circulation was reported in 1979 based on detection in
mosquitoes but without epidemic episode. Subsequently, two outbreaks occurred: the first along the east coast and in the
central highlands in 1990 and 1991 and the most recent along the northern and eastern coasts and in the central highlands
in 2008 and 2009. Despite the presence of 24 mosquitoes species potentially associated with RVFV transmission in
Madagascar, little associated entomological information is available. In this review, we list the RVFV vector, Culex
antennatus, as well as other taxa as candidate vector species. We discuss risk factors from an entomological perspective
for the re-emergence of RVF in Madagascar.

INTRODUCTION

Rift Valley fever (RVF) is a disease of humans and domes-
tic animals in several African countries.1 The disease is caused
by an arthropod-borne virus (RVF virus [RVFV]) belonging
to the family Bunyaviridae, genus Phlebovirus, which was first
isolated in 1931 during outbreak in Kenya.2 RVF touches a
wide range of wild and domestic vertebrate species, and the
severity of the disease varies according to the age of the host.3

A recent RVF outbreak that occurred in Madagascar was
probably associated with infected domestic animals imported
from east Africa.4,5 Another study suggested that this out-
break most likely originated from an endemic cycle localized
in southern Madagascar, where virus circulation may occur
annually.6 Although not quantified, it is possible that these
two mechanisms co-occur in Madagascar, with a recurrent
introduction that helps RVFV maintenance and recirculation
in the endemic cycle.7 The role of mosquitoes in RVF trans-
mission on the island was considered to be associated with the
first RVFV isolation and the 2008–2009 outbreak.8,9

Even given the presence of 32 mosquito species in
Madagascar that are known or suspected vectors of RVFV,
little information is available for these taxa from an entomo-
logical perspective. Herein, we focus on the mosquito species
present in Madagascar associated with RVFV transmission
based on data in the literature. Our objective here is to deter-
mine the status of each vector and review aspects of their
biology, geographical distribution, and ecology that might be
important for RVFV vector transmission.

HISTORY OF RVF OCCURRENCE IN MADAGASCAR

Three RVFV circulation periods are known to have taken
place in Madagascar. In 1979, the virus was isolated from
mosquitoes captured in a humid forest near Andasibe-Périnet
in central eastern Madagascar, but no evidence of an epizootic
period was reported.8 In 1990 and 1991, RVFV was isolated
from humans and livestock in the lowland eastern coastal and
upland central highlands, respectively.10,11 Twenty years later,
in 2008 and 2009, an RVF outbreak was reported in several

regions of the island with virus detection and isolation in mos-
quitoes, humans, and livestock.4,9 As supporting evidence, anti-
RVFV (immunoglobulin M [IgM] and IgG) antibodies have
been detected in livestock and humans during periods between
virus outbreaks.12,13 These results suggest a silent but continu-
ous circulation of the virus in livestock.

RVF TRANSMISSION

On a global basis, the occurrence and spread of the RVF
outbreaks on the African mainland and the Arabia Peninsula
are variable and found in different ecoclimatic zones; vector
species and vector capacity are influenced by ecological,14

behavioral,15 and RVFV molecular factors.16,17 For example,
in an arid area, such as the Arabian Peninsula, RVFV trans-
mission by mosquitoes is related to rainfall and water runoff
management, with temporary rain pools and floodplains
representing favorable vector breeding sites.18–20 In subhumid
areas in east Africa, RVF emergence is partly caused by the
vertical transmission of the virus in eggs of Aedes spp., espe-
cially those belonging to the Neomelaniconion subgenus,21

that are laid in wetland habitats. In the context of El Niño–
Southern Oscillation (ENSO) events, wetlands become flooded
after abnormally high rainfall, which in turn, favors the hatch-
ing of infected Aedes eggs and the development of the imma-
ture stages. This leads to the epizootic episode after adult
emergence, which is soon followed by a parallel emergence
of Culex.22,23 In west Africa, the virus circulates in the Sahelian
area transmitted by Aedes and Culex mosquitoes, which
develop in temporary pools where cattle and sheep concentrate
during the rainy season. Dam construction and ecological mod-
ification of the environment, including the presence of rice
fields, may lead to the outbreaks directly associated with vec-
tor abundance.24,25

Mosquitoes can become infected by feeding on an infected
host that exhibits a viremia higher than 101.3 plaque-forming
unit (pfu)/mL.26 RVFV can be transmitted to vertebrates and
mosquitoes by several mechanisms. (1) The transmission of
RVFV occurs through direct contact with body fluids (blood,
saliva, and/or nasal discharges) of infected animals or aborted
ruminant fetuses.27,28 Humans can be infected by contact with
infected tissues or aerosols of infected blood generated during
ruminant abortion or animal slaughter.27,29 (2) Vector trans-
mission occurs through the bite of infected mosquitoes.30 The
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first evidence of vector transmission goes back to 1948, when
RVFV was first isolated in a laboratory experiment and
identified from field-collected mosquitoes (Eretmapodites

spp. and Ae. [Aedimorphus] tarsalis group).31 (3) Vertical
transmission of RVFV from infected female mosquitoes to
their progeny also occurs. This means of transmission was
reported in the field for Ae. (Neomelaniconion) sp.21 and sug-
gested for Ae. (Aedimorphus) subgenus.18

Although RVF transmission to humans by infected mosqui-
toes was never been directly reported, probably more than
one species of the Ae. tarsalis group and 78 mosquito species
from eight genera have been associated with RVFV. Based on
the functioning of virus–vector systems,32 three criteria are
necessary to show the vector status of a given mosquito spe-
cies: (1) the isolation of RVFV from wild-caught mosquitoes,
(2) the observation in a laboratory setting of vector compe-
tence, and (3) evidence from the field of an association
between the arthropod vector and the vertebrate populations
in which the infection is occurring. In this paper, we propose
that mosquito vectors can be subdivided into three categories:
vector, candidate vector, and potential vector. If only one
criterion is validated, the mosquito species is qualified as a
potential vector; in the case of two criteria, the mosquito
species is qualified as a candidate vector, and for all three
criteria, the mosquito species is qualified as a vector.

MOSQUITO VECTORS IN MADAGASCAR

Twenty-four species have been associated with RVFV infec-
tions in Madagascar, representing 11% of known culicidian
species on the island.33 Most of these species have zoophilic
behavior (cattle, sheep, and goat), and some of them are
described opportunistic anthropophilic feeders.15,34,35 These
taxa belong to the genera Aedes, Anopheles, Culex,
Eretmapodites, and Mansonia following traditional morpho-
logical classifications.36,37

In Madagascar, six species of Aedes fall into the vector,
candidate vector, and potential vector categories associated
with RVFV. Most of these are known to feed on animals, and
Ae. albopictus and Ae. aegypti are highly anthropophilic.12

These six taxa belong to subgenera known and/or suggested
(based on fieldwork) to vertically transmit RVFV on the African
mainland (Aedimorphus,Neomelaniconion, and Stegomyia), sug-
gesting that RVFVmaintenance by vertical transmission is pos-
sible in Madagascar. Five Anopheles species are associated or
potentially associated with RVF transmission; all are zoophilic
or zooanthropophilic taxa,33 and three species are reported to be
infected with RVFV in continental Africa and Madagascar.9,21

Ten Culex vector species associated with RVF infection are pres-
ent in Madagascar. Nine of them are already reported in the field
to be RVFV-positive in Africa and Madagascar.9,19,25,38–41

One Eretmapodites species and two Mansonia species also
could be potential vectors in Madagascar.
Among these mosquito species, four were found naturally

infected in Madagascar: An. coustani, An. squamosus, Cx.

antennatus, and Ma. uniformis.9,42 Recently considered as an
RVFV candidate vector,15Cx. antennatus also has a high vector
competence.43 Only this species in Madagascar meets the three
criteria needed to be considered an RVFV vector. Moreover,
this zooantropophilic species is present and abundant in all five
biogeographical domains of Madagascar. Recently considered
as an RVFV candidate vector,15 Cx. antennatus has high vector

competence.43 Consequently, the role of this species as a major
vector of RVFV is confirmed. An. coustani and An. squamosus
are the most abundant Anopheles taxa in Madagascar, both
being zoophilic with broad distributions across the island.12,15

Information is currently not available on the level of vector
competence, and hence, both species remain RVFV candi-
date vectors.15

Using this proposed system of categorization, seven other
zooanthropophilic species should be included: Cx. univittatus, Cx.
pipiens, Cx. quinquefasciatus, Cx. poicilipes, Cx. tritaeniorhynchus,
Er. quinquevittatus, and Ma. uniformis. These species are also
abundant and present across Madagascar.12 With information
on natural and experimental infection of these Culex and
Eretmapodites species (Table 1) and the absence of RVFV
detection in the field in Madagascar, these species are consid-
ered as candidate vectors. No experimental information is avail-
able for Ma. uniformis in the transmission of RVFV. However,
this species is abundant, and humans are considered to be its
principal host in Madagascar12 and on the African mainland.35

The remaining mosquito species listed in Table 1 and present in
Madagascar should be considered as potential vectors.

RISK FACTORS ASSOCIATED WITH
MOSQUITO POPULATIONS

Excluding factors associated with vertebrates (species, move-
ment, density, susceptibility, and vaccination),69 mosquito vec-
tors are major components of RVF risk, which we refer to as
the entomological risk. Classically, this entomological risk takes
into account mosquito density, population dynamics, trophic
behavior, longevity of each mosquito population in a given
place, and vector competence of each species/population
for a given virus strain, including vertical transmission. These
variables are almost certainly influenced by climate (tempera-
ture and rainfall), biotic variables (breeding sites and pres-
ence of vertebrate hosts), and vector control as observed in
Madagascar15,69,70 and other countries.71

In Madagascar, the distributions of mosquitoes classified as
RVFV vectors, potential vectors, and candidate vector are
notably different and associated with biogeographical
domains.12 These differences might explain regional differ-
ences in RVFV prevalence and outbreaks.4,6 RVF circulation
and occurrences generally happen during the wet and warm
season,4 which correlates with the period of highest mosquito
density.9,15,12 This increase in mosquito vector density is
caused by the creation and maintenance of different breeding
sites.72 Indeed, mosquitoes species already associated with
RVFV in Madagascar colonize different types of larval breed-
ing sites, with rice fields being a dominant habitat.33,69

In Madagascar, vector control is primarily targeted against
mosquitoes transmitting malaria through the use of indoor
residual spraying (IRS) and nets (insecticide-treated mosquito
nets and long-lasting insecticidal mosquitoes nets).73 No larvi-
cidal measures have been undertaken on the island. The posi-
tive effect of these indoor treatments is to kill mosquitoes.
Several RVFV vectors are exophilic species and probably
escape these treatments. The negative effect is the appearance
of more exophilic and zoophilic populations after indoor treat-
ment, which was observed in Equatorial Guinea,74 Tanzania,75

Benin,76 and Senegal.77 For RVF infection, this negative effect is
poorly documented and therefore, speculative. Consequently,
vector control in Madagascar should not be a significant
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component of variation of transmission risk of RVF. How-
ever, the appearance of more exophilic and zoophilic popu-
lations cannot be removed from the RVFV transmission risk
factors list, because transmission involves mainly exophilic and
zoophilic species.33

Vector competence of Malagasy mosquitoes, including
their ability to transmit RVFV to their progeny, is very poorly
known. Vertical transmission has been observed in Africa in
the Neomelaniconion subgenera of the Aedes genus, which is
also present in Madagascar, and hence, it may occur on the
island.12 Because of the lack of evidence in Madagascar of
natural populations of Aedes spp. being infected with RVF,
the role of vertical transmission in maintenance of the disease
remains hypothetical. However, the majority of involved
Aedes subgenera is present in Madagascar.9,12,78 Additional
detection of RVF is needed (especially in the western domain,
where high RVFV prevalence has been reported, and the
southwestern domain, where endemic foci areas have been
suggested to occur6), particularly in the context of viral main-
tenance through a possible vertical transmission. Field studies
on vector biology and RVF entomological surveys need to be
further advanced to determine if endemic cycles occur.

IS IT POSSIBLE TO IDENTIFY RVF RISK AREAS
IN MADAGASCAR?

Recent history of RVFV circulation in Madagascar showed
13 administrative regions of the island, specifically the north-
ern, eastern, and central domains, where RVF epidemics/epi-
zootics occurred.4 The highest RVFV prevalence rates were
observed in livestock in the western and northern domains.6

The suggested RVFV candidates vectors (An. squamosus and
An. coustani) and major vector (Cx. antennatus) reproduce in
areas with large areas of water.33 Consequently, remote sens-
ing technology can be relevant to predict RVF outbreaks by
identifying the environmental factors, such as breeding sites
and rainfall, associated with the abundance of RVF vec-
tors that have been observed on mainland Africa.1,79,80 In
Madagascar, this technique was used on a local scale of one
domain during a malaria study81 and could provide interesting
insights associated with RVF entomological surveys, particu-
larly in the southwestern domain, where RVF is considered to
be endemic.6 Variation in monthly and annual precipitations
(http://iridl.ldeo.columbia.edu/) and patterns of variation in
larval development are important factors that vary between
biogeographical domains69; hence, this technology should be
used for the identification RVF risk areas. It could be very
useful to estimate the relationship between abundance of
breeding sites and density of adult vectors for additional vec-
tor surveillance and control.

GENERAL CONCLUSIONS

In Madagascar, there are 23 mosquito species considered as
vectors or potential vectors of RVFV. Only one species, Cx.
antennatus, meets the three criteria for classification as an
RVFV vector and should be considered as an important
vector of this disease. Several other species, such as An.
squamosus, An. coustani, Cx. univittatus, Cx. pipiens, and Ma.

uniformis, should be classified as candidate vector species. To
date, contrary to what has been observed in different parts of
Africa, no Malagasy Aedes species has been involved in the

transmission of this fever. However, several species, including
endemics, belonging to the Aedes subgenera involved in
transmission and maintenance of RVFV in Africa, specifically
Neomelaniconion and Aedimorphus, occur in Madagascar.
Finally, a considerable amount of information and data is
lacking for understanding of RVF transmission on the
island, and the vector component is one of the key factors
for deciphering past outbreaks and if possible, predicting
future events.
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